Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Genomics ; 24(1): 269, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2324467

ABSTRACT

BACKGROUND: Seagull as a migratory wild bird has become most popular species in southwest China since 1980s. Previously, we analyzed the gut microbiota and intestinal pathogenic bacteria configuration for this species by using 16S rRNA sequencing and culture methods. To continue in-depth research on the gut microbiome of migratory seagulls, the metagenomics, DNA virome and RNA virome were both investigated for their gut microbial communities of abundance and diversity in this study. RESULTS: The metagenomics results showed 99.72% of total species was bacteria, followed by viruses, fungi, archaea and eukaryota. In particular, Shigella sonnei, Escherichia albertii, Klebsiella pneumonia, Salmonella enterica and Shigella flexneri were the top distributed taxa at species level. PCoA, NMDS, and statistics indicated some drug resistant genes, such as adeL, evgS, tetA, PmrF, and evgA accumulated as time went by from November to January of the next year, and most of these genes were antibiotic efflux. DNA virome composition demonstrated that Caudovirales was the most abundance virus, followed by Cirlivirales, Geplafuvirales, Petitvirales and Piccovirales. Most of these phages corresponded to Enterobacteriaceae and Campylobacteriaceae bacterial hosts respectively. Caliciviridae, Coronaviridae and Picornaviridae were the top distributed RNA virome at family level of this migratory animal. Phylogenetic analysis indicated the sequences of contigs of Gammacoronavirus and Deltacoronavirus had highly similarity with some coronavirus references. CONCLUSIONS: In general, the characteristics of gut microbiome of migratory seagulls were closely related to human activities, and multiomics still revealed the potential public risk to human health.


Subject(s)
Gastrointestinal Microbiome , Viruses , Animals , Humans , Gastrointestinal Microbiome/genetics , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Viruses/genetics , Bacteria/genetics , DNA
2.
Viruses ; 15(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2216942

ABSTRACT

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Male , Antibodies, Viral/metabolism , Flavivirus/metabolism , Proteins/metabolism , Viral Envelope Proteins/metabolism , Zika Virus/physiology
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-20551.v4

ABSTRACT

Background: The COVID-19 spread worldwide quickly. Exploring the epidemiological characteristics could provide a basis for responding to imported cases abroad and to formulate prevention and control strategies in areas where COVID-19 is still spreading rapidly. Methods: : The number of confirmed cases, daily growth, incidence and length of time from the first reported case to the end of the local cases (i.e., non-overseas imported cases) were compared by spatial (geographical) and temporal classification and visualization of the development and changes of the epidemic situation by layers through maps. Results: : In the first wave, a total of 539 cases were reported in Sichuan, with an incidence rate of 0.6462/100,000. The closer to Hubei the population centres were, the more pronounced the epidemic was. The peak in Sichuan Province occurred in the second week. Eight weeks after the Wuhan lockdown, the health crisis had eased. The longest epidemic length at the city level in China (except Wuhan, Taiwan, and Hong Kong) was 53 days, with a median of 23 days. Spatial autocorrelation analysis of China showed positive spatial correlation (Moran's Index >0, p<0.05). Most countries outside China began to experience a rapid rise in infection rates 4 weeks after their first case. Some European countries experienced that rise earlier than the USA. The pandemic in Germany, Spain, Italy, and China took 28, 29, 34, and 18 days, respectively, to reach the peak of daily infections, after their daily increase of up to 20 cases. During this time, countries in the African region and Southeast Asian region were at an early stage of infections, those in the Eastern Mediterranean region and region of the Americas were in a rapid growth phase. Conclusions: : After the closure of the outbreak city, appropriate isolation and control measures in the next 8 weeks were key to control the outbreak, which reduced the peak value and length of the outbreak. Some countries with improved epidemic situations need to develop a continuous "local strategy at entry checkpoints" to to fend off imported COVID-19.


Subject(s)
COVID-19 , Aphasia
SELECTION OF CITATIONS
SEARCH DETAIL